Finite Horizon Robustness Analysis of LTV Systems Using Integral Quadratic Constraints
نویسندگان
چکیده
The goal of this paper is to assess the robustness of an uncertain linear time-varying (LTV) system on a finite time horizon. The uncertain system is modeled as a connection of a known LTV system and a perturbation. The input/output behavior of the perturbation is described by time-domain, integral quadratic constraints (IQCs). Typical notions of robustness, e.g. nominal stability and gain/phase margins, can be insufficient for finite-horizon analysis. Instead, this paper focuses on robust induced gains and bounds on the reachable set of states. Sufficient conditions to compute robust performance bounds are formulated using dissipation inequalities and IQCs. The analysis conditions are provided in two equivalent forms as Riccati differential equations and differential linear matrix inequalities. A computational approach is provided that leverages both forms of the analysis conditions. The approach is demonstrated with two examples.
منابع مشابه
Optimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملLess Conservative Robustness Analysis of Linear Parameter Varying Systems Using Integral Quadratic Constraints
This paper considers the robustness of a feedback connection of a known linear parameter varying (LPV) system and a perturbation. A sufficient condition is derived to bound the worst-case gain and ensure robust asymptotic stability. The input/output behavior of the perturbation is described by multiple integral quadratic constraints (IQCs). The analysis condition is formulated as a dissipation ...
متن کاملInput-to-state stable finite horizon MPC for neutrally stable linear discrete-time systems with input constraints
MPC or model predictive control is representative of control methods which are able to handle inequality constraints. Closed-loop stability can therefore be ensured only locally in the presence of constraints of this type. However, if the system is neutrally stable, and if the constraints are imposed only on the input, global asymptotic stability can be obtained; until recently, use of infinite...
متن کاملRobustness Analysis of Uncertain Discrete-Time Systems with Dissipation Inequalities and Integral Quadratic Constraints
This paper presents a connection between dissipation inequalities and integral quadratic constraints (IQCs) for robustness analysis of uncertain discrete-time systems. Traditional IQC results derived from homotopy methods emphasize an operator-theoretic input-output viewpoint. In contrast, the dissipativity-based IQC approach explicitly incorporates the internal states of the uncertain system, ...
متن کاملAn Overview of Integral Quadratic Constraints for Delayed Nonlinear and Parameter-Varying Systems
A general framework is presented for analyzing the stability and performance of nonlinear and linear parameter varying (LPV) time delayed systems. First, the input/output behavior of the time delay operator is bounded in the frequency domain by integral quadratic constraints (IQCs). A constant delay is a linear, time-invariant system and this leads to a simple, intuitive interpretation for thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.07248 شماره
صفحات -
تاریخ انتشار 2017